Disordered photonic crystals understood by a perturbation formalism
نویسندگان
چکیده
Photonic band gaps in disordered two-dimensional photonic crystals are investigated for two typical types of randomness: cylinder site displacements ~site randomness! and cylinder radius variations ~size randomness!. The plane-wave expansion method with a supercell technique is applied to calculate the density-of-states ~DOS! for the disordered photonic crystals. In particular, numerical simulations on the DOS for square and triangular lattices of dielectric cylinders in air with the E-polarization mode show that photonic band gaps are far more sensitive to disorders with a size randomness than with a site randomness. The first and second band gaps both reduce very little even for a site randomness of a strength as large as half the cylinder radius, yet they reduce more than one-half for a size randomness of a strength about one-third the cylinder radius. This substantial contrast can be understood by the analysis of the electromagnetic fields in disordered crystals. Based on such a field analysis, a perturbation formalism is proposed for disordered crystals and it accords well with the DOS calculations for a site randomness of even a moderate strength. At very weak size randomness, the perturbation method also works well to some extent. Such a simple perturbative analysis should provide a systematic way to understand various disordered photonic crystals qualitatively and even semiquantitatively.
منابع مشابه
A Systematic Approach to Photonic Crystal Based Metamaterial Design
Photonic crystal design procedure for negative refraction has so far been based on trial and error. In this paper, for the first time, a novel and systematic design procedure based on physical and mathematical properties of photonic crystals is proposed to design crystal equi-frequency contours (EFCs) to produce negative refraction. The EFC design is performed by the help of rectangular stair-c...
متن کاملDesign and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals
In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...
متن کاملInfluence of optical Kerr coefficient on photonic band structures of hexagonal-lattice function photonic crystals
In this paper, we have studied the photonic band structure of function photonic crystals in which the dielectric constant of the scattering centers (rods) is a function of space coordinates. The under-studied lattice is hexagonal and cross section of rods has a circular symmetry embedded in the air background. Photonic band structures for both electric and magnetic polarizations of the electrom...
متن کاملCoupling, Scattering, and Perturbation Theory: Semi-analytical Analyses of Photonic-Crystal Waveguides
Although brute-force simulations of Maxwell’s equations, such as FDTD methods, have enjoyed wide success in modeling photonic-crystal systems, they are not ideally suited for the study of weak perturbations, such as surface roughness or gradual waveguide transitions, where a high resolution and/or large computational cells are required. Instead, we suggest that these important problems are idea...
متن کاملThe effect of cells' radius on optical filter output spectrum based on photonic crystals
In this article, the effect of cells' radius on the behavior of wavelength switching optical filter andthe effect of the radius of the optical filters' key characteristics such as wavelength resonance onan optical filter based on photonic crystals, have been investigated. Currently, the most commonapplied mechanism for designing optical filter based on photonic crystals is using twomechanisms s...
متن کامل